ADVANCED NEWS: Masking epilepsy by combining two epilepsy genes

Welcome to the Coping With Epilepsy Forums

Welcome to the Coping With Epilepsy forums - a peer support community for folks dealing (directly or indirectly) with seizure disorders. You can visit the forum page to see the list of forum nodes (categories/rooms) for topics.

Please have a look around and if you like what you see, please consider registering an account and joining the discussions. When you register an account and log in, you may enjoy additional benefits including no ads, access to members only (ie. private) forum nodes and more. Registering an account is free - you have nothing to lose!

brain

Account Closed
Inactive
Messages
3,450
Reaction score
2
Points
0
Masking epilepsy by combining two epilepsy genes


1: Nat Neurosci. 2007 Nov 4; (Epub ahead of print)

ABSTRACT

Glasscock E, Qian J, Yoo JW, Noebels JL.
Departments of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.

Inherited errors in ion channel genes comprise the largest subset of monogenic causes of idiopathic epilepsy, and pathogenic variants contribute to genetic risk in the complex inheritance of this common disorder. We generated a digenic mouse model of human idiopathic epilepsy by combining two epilepsy-associated ion channel mutations with mutually opposing excitability defects and overlapping subcellular localization. We found that increasing membrane excitability by removing Shaker-like K(+) channels, which are encoded by the Kcna1 gene, masked the absence epilepsy caused by a P/Q-type Ca(2+) channelopathy due to a missense mutation in the Cacna1a gene. Conversely, decreasing network excitability by impairing Cacna1a Ca(2+)-channel function attenuated limbic seizures and sudden death in Kcna1-null mice. We also identified intermediate excitability phenotypes at the network and axonal levels. Protective interactions between pathogenic ion channel variants may markedly alter the clinical expression of epilepsy, highlighting the need for comprehensive profiling of this candidate gene set to improve the accuracy of genetic risk assessment of this complex disease.

PMID: 17982453 [PubMed - as supplied by publisher]
 
Back
Top Bottom