epileric
Veteran
- Messages
- 4,499
- Reaction score
- 1
- Points
- 163
Was e-mailed a newsletter that had this article.
Study Pinpoints Drugs to Prevent Epilepsy
Drugs that block a growth factor receptor on brain cells may prevent epilepsy after brain damage, according to a new study appearing in the July 15 issue of the Journal of Neuroscience.
Daniela Kaufer, an assistant professor of integrative biology at the University of California, Berkeley, graduate student Luisa P. Cacheaux, and their Israeli colleagues, graduate student Yaron David and neurosurgeon Alon Friedman, found that they could prevent the brain changes leading to epilepsy in rats by treating the animals with a drug that blocks transforming growth factor-beta (TGF-beta) receptors.
"When we add the blockers, the hyper-excitability that you normally see after brain trauma is gone," Cacheaux said. "The blockers also prevent a majority of the gene expression changes that we see following brain insult."
While seizures can take weeks to show up in rats, for the current paper, the researchers followed the rats for only four days after brain injury and treatment with TGF-beta blockers. Nevertheless, preliminary EEG studies of the rats' brains indicated that most animals remained seizure-free after a month.
If the findings are confirmed in humans, a TGF-beta blocker may prevent many cases of epilepsy in accident victims or soldiers who are victims of roadside bombs. Because of better medical care, many soldiers now survive severe traumatic brain injuries, yet those with severe head injuries are thought to have a 25 to 50 percent chance of eventually developing epileptic seizures.
Because seizures develop weeks to years after an injury, there is a large window of opportunity in which patients could be treated with drugs to prevent the development of seizures, Kaufer said.
The results are the culmination of more than 14 years of research to explore the hypothesis that trauma-induced epilepsy is caused by leakage of blood into the brain after injury, whether caused by trauma, brain tumors or infection, meningitis, or a hemorrhagic or ischemic stroke.
Source: University of California - Berkeley